
From WHILE programs to
Spiking Neural P systems

Alberto Leporati and Lorenzo Rovida

University of Milano-Bicocca

Department of Informatics, Systems, and Communication

alberto.leporati@unimib.it, lorenzo.rovida@unimib.it

21st Brainstorming Week on Membrane Computing (BWMC 2025)

Seville – January 22-24, 2025

mailto:alberto.leporati@unimib.it
mailto:lorenzo.rovida@unimib.it

A “high-level” programming language for building spiking neural
P systems

Imagine you want to build (say) a spiking neural (SN) P system that computes (say)
the square function: f(n) = n2

• You may work directly with SN P systems

• You may first write a program for a register machine, and then build the SN P
system by composing ADD and SUB modules

• This substitution can be performed automatically

• It works for many universal models of P systems (and not only)

• However, working directly with register machines is uncomfortable

• So what about writing a program in a « high-level » programming language, which is then
compiled to an equivalent program for register machines?

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025 Slide 2 of 24

• We propose to make both translations automatically, that is:

• The first compiler would be fixed, the others would depend upon the model of P
systems considered

• The output could be given in P-Lingua
• To start with, the high-level language should be very easy

• A possible candidate: the WHILE language

• Of course, the WHILE language is Turing-complete

High-level

programs

Programs for

register machines

SN P systems
compiler

EN P systems

⋮

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025 Slide 3 of 24

A “high-level” programming language for building spiking neural
P systems

• The WHILE language (used in Davies et al.’s book):
• Variables xj, for jℕ, each containing a non-negative integer value

• Assignment commands:

 xk := 0 xk := xj + 1 xk := xj ∸1 (truncated decrement)

• While commands:

 while xk  0 do C

 where C is an arbitrary command

• Compound commands:

 begin C1; C2; … Cm; end (m > 0)

 where C1; C2; … Cm are arbitrary commands

• A program is a compound command

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025 Slide 4 of 24

A “high-level” programming language for building spiking neural
P systems

• The WHILE language can be extended through macros of the kind

 xi = Op(xj, xk)

 For example, Op can be Sum, Product, TruncatedSum, IntegerDivision, Mod,
CantorPairingFunction, …

• Other possible natural extensions/alternatives:

• Using a more sophisticated/expressive language
• Programs would be easier to write, but the compiler would be harder to write

• What about a concurrent programming language?
• Inspired from Occam?

• For now, we have worked with the WHILE language

5
Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025 Slide 5 of 24

A “high-level” programming language for building spiking neural
P systems

6

An extended WHILE grammar

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025 Slide 6 of 24

7
Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025 Slide 7 of 24

An extended WHILE grammar

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025 Slide 8 of 24

Translating WHILE programs to Register Machines programs

• Assignment statement:

• Increment statement (, case i = j):

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025 Slide 9 of 24

Translating WHILE programs to Register Machines programs

• Increment statement (, case i ≠ j):

Reset ri to 0, then move the value of rj to both ri and r22 (an auxiliary register, since moving
destroys the origin), then increment ri, then move the value of r22 to rj

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025 Slide 10 of 24

Translating WHILE programs to Register Machines programs

• Decrement statement (, case i = j):

• Decrement statement (, case i ≠ j):

Reset ri to 0, then move the value of rj to both ri and r22 (an auxiliary
register), then decrement ri, then move the value of r22 to rj

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

Translating WHILE programs to Register Machines programs

• While statement:

Slide 11 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

From WHILE programs to SN P systems

Slide 12 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

From WHILE programs to SN P systems

Slide 13 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

From WHILE programs to SN P systems

Slide 14 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

From WHILE programs to SN P systems

Slide 15 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

From WHILE programs to SN P systems

Slide 16 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

From WHILE programs to SN P systems

Slide 17 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

From WHILE programs to SN P systems

Slide 18 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

From WHILE programs to SN P systems

Slide 19 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

Using existing macros

Slide 20 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

Creating new macros

Slide 21 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

Creating new macros

Slide 22 of 24

Brainstorming Week on Membrane Computing – Seville, 22-24 January 2025

Future work

• Improve macro management

• Implement input and output spike trains

• Extend the technique to other computational models

• Other possible natural extensions/alternatives:

• Using a more sophisticated/expressive language
• Programs would be easier to write, but the compiler

would be harder to write

• What about a concurrent programming language?
• Inspired from Occam?

Slide 23 of 24

Thank you
for your attention !

Alberto Leporati and Lorenzo Rovida

alberto.leporati@unimib.it, lorenzo.rovida@unimib.it

mailto:alberto.leporati@unimib.it
mailto:lorenzo.rovida@unimib.it

	Slide 1: From WHILE programs to Spiking Neural P systems
	Slide 2: A “high-level” programming language for building spiking neural P systems
	Slide 3: A “high-level” programming language for building spiking neural P systems
	Slide 4: A “high-level” programming language for building spiking neural P systems
	Slide 5: A “high-level” programming language for building spiking neural P systems
	Slide 6: An extended WHILE grammar
	Slide 7: An extended WHILE grammar
	Slide 8: Translating WHILE programs to Register Machines programs
	Slide 9: Translating WHILE programs to Register Machines programs
	Slide 10: Translating WHILE programs to Register Machines programs
	Slide 11: Translating WHILE programs to Register Machines programs
	Slide 12: From WHILE programs to SN P systems
	Slide 13: From WHILE programs to SN P systems
	Slide 14: From WHILE programs to SN P systems
	Slide 15: From WHILE programs to SN P systems
	Slide 16: From WHILE programs to SN P systems
	Slide 17: From WHILE programs to SN P systems
	Slide 18: From WHILE programs to SN P systems
	Slide 19: From WHILE programs to SN P systems
	Slide 20: Using existing macros
	Slide 21: Creating new macros
	Slide 22: Creating new macros
	Slide 23: Future work
	Slide 24: Thank you for your attention !

