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A “high-level” programming language for building spiking neural 
P systems

Imagine you want to build (say) a spiking neural (SN) P system that computes (say) 
the square function: f(n) = n2

• You may work directly with SN P systems

• You may first write a program for a register machine, and then build the SN P 
system by composing ADD and SUB modules

•  This substitution can be performed automatically

•  It works for many universal models of P systems (and not only)

• However, working directly with register machines is uncomfortable

• So what about writing a program in a « high-level » programming language, which is then 
compiled to an equivalent program for register machines?
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• We propose to make both translations automatically, that is:

• The first compiler would be fixed, the others would depend upon the model of P 
systems considered

• The output could be given in P-Lingua
• To start with, the high-level language should be very easy

• A possible candidate: the WHILE language

• Of course, the WHILE language is Turing-complete
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• The WHILE language (used in Davies et al.’s book):
• Variables xj, for jℕ, each containing a non-negative integer value

• Assignment commands:

    xk := 0    xk := xj + 1        xk := xj ∸1    (truncated decrement)

• While commands:

      while xk  0 do C

 where C is an arbitrary command

• Compound commands:

      begin  C1;  C2;  …  Cm;  end     (m > 0)

 where C1;  C2;  …  Cm are arbitrary commands

• A program is a compound command
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• The WHILE language can be extended through macros of the kind

 xi = Op(xj, xk)

 For example, Op can be Sum, Product, TruncatedSum, IntegerDivision, Mod, 
CantorPairingFunction, …

• Other possible natural extensions/alternatives:

• Using a more sophisticated/expressive language
• Programs would be easier to write, but the compiler would be harder to write

• What about a concurrent programming language?
• Inspired from Occam?

• For now, we have worked with the WHILE language 
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An extended WHILE grammar
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Translating WHILE programs to Register Machines programs

• Assignment statement:

 

• Increment statement (                        , case i = j ):
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Translating WHILE programs to Register Machines programs

• Increment statement (                        , case i ≠ j ):

 

Reset ri to 0, then move the value of rj to both ri and r22 (an auxiliary register, since moving 
destroys the origin), then increment ri, then move the value of r22 to rj 
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Translating WHILE programs to Register Machines programs

• Decrement statement (                        , case i = j ):

 

• Decrement statement (                        , case i ≠ j ):

 

Reset ri to 0, then move the value of rj to both ri and r22 (an auxiliary 
register), then decrement ri, then move the value of r22 to rj 
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Translating WHILE programs to Register Machines programs

• While statement:
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Using existing macros
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Creating new macros
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Creating new macros
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Future work

• Improve macro management

• Implement input and output spike trains

• Extend the technique to other computational models

• Other possible natural extensions/alternatives:

• Using a more sophisticated/expressive language
• Programs would be easier to write, but the compiler 

would be harder to write

• What about a concurrent programming language?
• Inspired from Occam?
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Thank you
for your attention !

Alberto Leporati and Lorenzo Rovida

alberto.leporati@unimib.it, lorenzo.rovida@unimib.it  
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