-

DEGLI STUDI

s

~ S

= E 21st Brainstorming Week on Membrane Computing (BWMC 2025)
Z Z

— o

BICOGCA

From WHILE programs to
Spiking Neural P systems

Alberto Leporati and Lorenzo Rovida
University of Milano-Bicocca
Department of Informatics, Systems, and Communication

alberto.leporati@unimib.it, lorenzo.rovida@unimib.it

Seville - January 22-24, 2025

mailto:alberto.leporati@unimib.it
mailto:lorenzo.rovida@unimib.it

A “high-level” programming language for building spiking neural
P systems

Imagine you want to build (say) a spiking neural (SN) P system that computes (say)
the square function: f(n) = n?

* You may work directly with SN P systems
* You may first write a program for a register machine, and then build the SN P
system by composing ADD and SUB modules
* This substitution can be performed automatically
* |t works for many universal models of P systems (and not only)
* However, working directly with register machines is uncomfortable

* So what about writing a program in a « high-level » programming language, which is then
compiled to an equivalent program for register machines?

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 2 of 24

A “high-level” programming language for building spiking neural
P systems

* We propose to make both translations automatically, that is:

G
. conp’ SN P systems
High-level | COmpiler | programs for / .

programs "| register machines :

Ompl] er

* The first compiler would be fixed, the others would depend upon the model of P
systems considered

* The output could be given in P-Lingua

* To start with, the high-level language should be very easy
* A possible candidate: the wHILE language
* Of course, the wHILE language is Turing-complete

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 3 of 24

A “high-level” programming language for building spiking neural
P systems

Second Edition

* The WHILE language (used in Davies et al.s book): 5
Computability,

* Variables x;, for jeN, each containing a non-negative integer value Complexity, and
: Languages

e Assignment commands: o
Theoretical Cmn/_).vuer

X.:=0 X, :=x;+1 x.:=x;~1 (truncated decrement) Science

Martin D. Davis

* While commands: Ron Sigel

Elaine J. Weyuker

while x, #0 do C
where Cis an arbitrary command
¢ Compound commands:
begin C;; C,; ... C,; end (m>0)
where C;; C,; ... C,, are arbitrary commands

A program is a compound command

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 4 of 24

A “high-level” programming language for building spiking neural
P systems

* The WHILE language can be extended through macros of the kind
X; = Op(x;, X)
For example, Op can be Sum, Product, TruncatedSum, IntegerDivision, Mod,
CantorPairingFunction, ...

* Other possible natural extensions/alternatives:

* Using a more sophisticated/expressive language
* Programs would be easier to write, but the compiler would be harder to write

 What about a concurrent programming language?
* Inspired from Occam?

* For now, we have worked with the WHILE language

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 5 of 24

An extended WHILE grammar

{program) — [(include)]
‘Program’ [a-zA-Z] [a-zA-Z0-9]* *;’
(description)]
(input)]
{ statements-list)
{output)y
{include) — ‘include’ — [a-zA-Z0-9_.-1x* ‘;’ [(include)]
{description) — /%’ [a-zA-Z0-9 .-\s]* ‘x/’
{input) — ‘input’ {registers)
{composed-statementy — ‘begin’ {statements) ‘end’
{output)y — ‘output’ ‘x_’ {id)

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 6 of 24

An extended WHILE grammar

(statements) — (statement) [(statement)]
(statement) — (assignment)
| (incy
| {dec)
| {while)
| {macro)
| {comment)
{assignment) — ‘x_ {id)y ‘=" [0-9]* ¢;’
<z‘nc> — ‘X_, <z'd> ‘=? (x—’ <Z‘d> ‘+’ (1? ‘;?
(dec) N ‘X_, <Zd> . tx_: <Zd> (9 ¢17 c;7
{while) — ‘while’ ‘x_’ {id) ‘'=" ‘0’ ‘do’ {composed-statement)
| ‘while’ ‘x_’ {id) ‘'=’ ‘0’ ‘do’ (statements) ‘end while’
{comment) —) *
{registers) — ‘x_" {id)
|

‘x_ (id)y ¢, (registers)

(id)

l

[0-91{1, 2}

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 7 of 24

Translating WHILE programs to Register Machines programs

* Assignment statement:

lo . SUB(T‘Z'), lo, ll

Tw—rm(z; :=0) = {l _
1 -

* Increment statement (x; = x; + 1, casel =]):

lo : ADD(’)"Z'), ll, ll

TW—LRM(:E'I: = .’L'j -+].) = {l -
1 -

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 8 of 24

Translating WHILE programs to Register Machines programs

* Increment statement (x; = x; + 1, casei #]):

(lo: SUB(ry),lo, Iy
l1: ADD(ras),l2,ls
lo: ADD(ry),ls,l3
l3: SUB(ry),l1,l

Twrm(z;ii=2x; +1) = < I, SUBET;i)al-fhlﬁ
Is: ADD(r;),ls,l4
Is: SUB(ra),ls,lg
klﬁ :

Reset r; to 0, then move the value of r; to both r; and 1y, (an auxiliary register, since moving

destroys the origin), then increment r;, then move the value of ry, to r;

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025

Slide 9 of 24

Translating WHILE programs to Register Machines programs

* Decrement statement (x; = z; — 1,casei=]):

.
lo: SUB(r, lo: SUB(r:),lo, 0
Twrm(zi =2~ 1) =
R =) {ll S l1: ADD(rgq),ls, (s
lz ADD(’I‘Z),lg,lg,
* Decrement statement (x; = x; — 1, case i]): 3+ SUB(r;), 11,14
l4 . SUB(’I"z),l5,l5
TW—>RM(5U2' =25 =].) = <[5 : SUB(’I“Z'),ZG,ZG
lﬁ SUB('I"QQ), l7, lg
N l7 . ADD(’I‘j),lﬁ,lﬁ
Res-et I to 0, then move the value of rj to both r; and r;;, (an auxiliary ls . SUB(r;),lo, o
register), then decrement r;, then move the value of r, to r;
lg SUB(’I"j), 110, ll()

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 10 of 24

Translating WHILE programs to Register Machines programs

e While statement:

(lo: SUB(r:), 11, lnss
I ADD(r;),ls,1s
[y : 4
[5 : Cy

TW_,RM(While z; #0 do C) = 4
ln+1 : Cn
lnta @ SUB(722), Lo, lo

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 11 of 24

Examples

Grammars can be checked out at whilecompiler/grammars

1) While — Registers Machine language

Using the library it is straightforward to translate a WHILE program into a registers machine program, as the
example shows:

from whilecompiler import translator

program = """
begin
//This is a comment
X _0 = 1;
x_1 = 3; SUB(@),
X 0 =x_0 + 1; ADD(@),
end SUB(1),
i ADD(1),
ADD(1),
compiled = translator.while_to_rm(program, as_string = True) ADD(1),
print(compiled) ADD(Q),

Gives as output:

2) While — Spiking Neural P-System

It is really easy and straightforward to build SN P-System from a WHILE language code.

rm_model = translator.while_to_rm(while_program)
psystem = translator.rm_to_psystem(rm_model)

print(psystem)

The output of this code is

P-System containing 36 neurons, 78 synapses and 23 registers.

3) Simulating the SN P-System

There are two ways to simulate the generated P-System. The first one is done using this library and it is about
calling the simulate() function available in the SNPSystem class. An example is given:

rm_model = translator.while_to_rm(while_program) &

psystem = translator.rm_to_psystem(rm_model)

psystem.simulate()

Another way to simulate the SN P-System is through the P-Lingua software using a simulator described in [2].
The library is able to convert a SNPSystem objectintoa .pli file (which is a description of the system,
consisting of neurons, synapses and rules) that is executable by P-Lingua.

rm_model = translator.while_to_rm(while_program)
psystem = translator.rm_to_psystem(rm_model)

psystem.export_to_pli('exported.pli')

Then, we are able to simulate the system using the following command:

'java —jar plinguacore4.jar plingua_sim -PLI exported.pli —o output_report.txt;

Notice that we need Java installed and plinguacore4.jar , which is available here (optionally, it is possible to find
itin utils folder of this repository).

In this case, it is useful to check the output report and see the contents of the registers neurons.

The translation from a registers machine program to a SN P-System has been made according to the following
rules (refer to [2] for a in-depth explaination)

o ADD(1), 2, 3: add one to register 1 and jump non deterministically to label I, or I; (this behavior has been
simulated using a random jump). Notice that the two labels are not equal.

From WHILE programs to SN P systems

e ADD(1), 2, 2: add one to register 1 and jump deterministically to 1,.

I 4

] T

a(aa)™ /a® — a;0
a—a;l

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 17 of 24

e SUB(1), 2, 3: subtracts one from register 1 and jump to L, if r; was not empty. Jump to l; otherwise

From WHILE programs to SN P systems

e SUB(1), 2, 2: subtracts one from register 1 and jump to [, in any case.

a(aa)’ /a® = a;0
a— a;l

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 19 of 24

Existent macros are defined in whilecompiler/macros/std.wp , and it is possible to use them by importing the
file, just write import macros/std.wp on top of your WHILE program.

For instance, the following program uses the '+' operator:

include "macros/std.wp";
Program example;
input x_0, x_1;
begin
X_2 =X_0 + x_1;
end
output x_2;

The next example, on the other hand, uses a function:

include "macros/std.wp";
Program example;
input x_0;
begin

assign(x_2, x_0);
end
output x_2;

It is also possible to define new macros. In order to do that, create a .wp file in the same folder of your program.
For instance, macroexamples.wp . The compiler will look for custom macros in the local path.

A macro can be defined as a function (witn n arguments):

def macro function assign (x_a x_b) {
Xx_a=x_b+ 1;
X_a x_a - 1;

or as a binary operator (with three arguments)

def macro operator '+' (x_a, x_b, x_c) {
X_22 = x_b + 1;
X_23 = x_c + 1;

while x_23 != 0 do
begin
x_22 X 22 + 1;
x_23 = x 23 - 1;
end

X 22 = x 22 - 1;
Xx_a = x_22 - 1;

X_22 =
X_23 =

You can check the grammar in whilecompiler/grammars/while_macro.tx . The body of a macro will be then
parsed as a standard WHILE program.

The compiler will replace 'x_a', 'x_b' etc. with the contents of the program. For instance, by writing assign(x_1,

x_2) , the macro defined above will replace x_a with x_1,and x_b with x_2.

It is a good practice to reset the temporary registers used in macros and to put the result in the first argument.

Future work

Improve macro management

Implement input and output spike trains

Extend the technique to other computational models = 'Q |

Other possible natural extensions/alternatives:
“To Deo..-

e Using a more sophisticated/expressive language

* Programs would be easier to write, but the compiler
would be harder to write

 What about a concurrent programming language?
* Inspired from Occam?

Brainstorming Week on Membrane Computing — Seville, 22-24 January 2025 Slide 23 of 24

Thank you
for your attention !

Alberto Leporati and Lorenzo Rovida
alberto.leporati@unimib.it, lorenzo.rovida@unimib.it

mailto:alberto.leporati@unimib.it
mailto:lorenzo.rovida@unimib.it

	Slide 1: From WHILE programs to Spiking Neural P systems
	Slide 2: A “high-level” programming language for building spiking neural P systems
	Slide 3: A “high-level” programming language for building spiking neural P systems
	Slide 4: A “high-level” programming language for building spiking neural P systems
	Slide 5: A “high-level” programming language for building spiking neural P systems
	Slide 6: An extended WHILE grammar
	Slide 7: An extended WHILE grammar
	Slide 8: Translating WHILE programs to Register Machines programs
	Slide 9: Translating WHILE programs to Register Machines programs
	Slide 10: Translating WHILE programs to Register Machines programs
	Slide 11: Translating WHILE programs to Register Machines programs
	Slide 12: From WHILE programs to SN P systems
	Slide 13: From WHILE programs to SN P systems
	Slide 14: From WHILE programs to SN P systems
	Slide 15: From WHILE programs to SN P systems
	Slide 16: From WHILE programs to SN P systems
	Slide 17: From WHILE programs to SN P systems
	Slide 18: From WHILE programs to SN P systems
	Slide 19: From WHILE programs to SN P systems
	Slide 20: Using existing macros
	Slide 21: Creating new macros
	Slide 22: Creating new macros
	Slide 23: Future work
	Slide 24: Thank you for your attention !

